Ultrafast Charge Separation and Indirect Exciton Formation in a MoS$_2$—MoSe$_2$ van der Waals Heterostructure

Frank Ceballos, Matthew Z. Bellus, Hsin-Ying Chiu,* and Hui Zhao*

Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States

ABSTRACT We observe subpicosecond charge separation and formation of indirect excitons in a van der Waals heterostructure formed by molybdenum disulfide and molybdenum diselenide monolayers. The sample is fabricated by manually stacking monolayer MoS$_2$ and MoSe$_2$ flakes prepared by mechanical exfoliation. Photoluminescence measurements confirm the formation of an effective heterojunction. In the transient absorption measurements, an ultrafast laser pulse resonantly injects excitons in the MoSe$_2$ layer of the heterostructure. Differential reflection of a probe pulse tuned to the MoS$_2$ exciton resonance is immediately observed following the pump excitation. This proves ultrafast transfer of electrons from MoSe$_2$ to MoS$_2$ layers, despite the strong Coulomb attraction from the holes in the resonantly excited excitons. Conversely, when excitons are selectively injected in MoS$_2$, holes transfer to MoSe$_2$ on an ultrafast time scale, too, as observed by measuring the differential reflection of a probe tuned to the MoSe$_2$ resonance. The ultrafast charge transfer process is followed by the formation of spatially indirect excitons with electrons and holes residing in different layers. The lifetime of these indirect excitons is found to be longer than that of the direct excitons in individual MoS$_2$ and MoSe$_2$ monolayers.

KEYWORDS: van der Waals heterostructure · transition metal dichalcogenides · molybdenum disulfide · molybdenum diselenide · 2D materials · transient absorption · exciton

For several decades, heterostructures formed by interfacing two different materials have been a cornerstone for developing functional materials with emergent properties. Traditionally, such structures are fabricated by epitaxy techniques that require lattice matching of the component materials. Hence, the selection of component materials is restricted to those with similar lattice structures, where oftentimes, a slight lattice mismatch results in poor interface qualities. The newly developed two-dimensional crystals from layered materials, such as graphene, boron nitride, and transition metal dichalcogenides (TMDs), open up a new avenue for fabricating the so-called van der Waals heterostructures. Since the weak van der Waals interlayer coupling is used, the lattice-matching requirement is relaxed. Thus, a huge number of combinations can be designed and explored. The interface can be atomically sharp and the junction region can be as thin as two atomic layers.

In addition, these van der Waals heterostructures are flexible and their fabrication is compatible with current thin-film technologies. The process can potentially be scaled up to make multilayers or even three-dimensional crystals.

So far, most studies on van der Waals heterostructures focus on those formed between graphene and multilayer TMDs. Vertical tunneling transistors utilizing a multilayer MoS$_2$ or WS$_2$ as the tunneling barrier between graphene layers have achieved high on/off ratios. The tunneling can be controlled by inserting an insulating layer between MoS$_2$ and graphene, as demonstrated in memory devices. These structures also showed promising applications in optoelectronics, since they can potentially combine the novel optical properties of TMDs with the superior transport properties of graphene. Very recently, direct growth of various TMD films on graphene has also been demonstrated.

* Address correspondence to chiu@ku.edu, huizhao@ku.edu.

Received for review October 9, 2014 and accepted November 17, 2014.

Published online November 17, 2014 10.1021/nn505736z

© 2014 American Chemical Society
Compared to these semimetal–semiconductor structures, all-semiconducting heterostructures formed by different members of TMDs are closer in concept to traditional semiconducting heterostructures. When used as active layers in optoelectronic devices, they can potentially overcome some limitations of individual TMD layers. For example, one challenge in using individual TMD films in photovoltaic devices is their relatively low light absorption. Although monolayer (ML) TMDs can absorb more than 10% of incident light,22 such a high absorption coefficient cannot be scaled up by increasing the thickness, owing to the direct-to-indirect bandgap transition in multilayers.33,34 However, thanks to the weak interlayer coupling, TMD monolayers in heterostructures maintain their own direct bandstructures.35,36 Hence, their absorption is expected to simply add up.22 Furthermore, based on first-principles calculations, most heterostructures formed by two TMD monolayers have type-II band alignments, where the bottom of the conduction band and the top of the valence band reside in different layers.37–42 Such a band alignment is expected to facilitate the spatial separation of electrons and holes after photoexcitation, which can be utilized in photovoltaic devices. It can also result in longer lifetime of photocarriers due to the spatial separation of electrons and holes. In recent experiments on MoS2–WSe2 heterostructures, quenching of photoluminescence (PL) was observed,43 which indicates the interlayer charge transfer, and their applications in photovoltaic44 and field effect transistors45 were demonstrated. Very recently, ultrafast hole transfer from MoS2 to WSe246 and long lifetimes of indirect excitons in a MoSe2–WSe2 heterostructure were revealed.47

We report direct time-resolution of charge separation and indirect exciton formation in a heterostructure formed by MoS2 and MoSe2 MLs by transient absorption measurements. By selectively injecting excitons in one of the layers and probing the exciton states of the other layer, we find that electrons and holes transfer to the lower-energy side of the heterostructure on a subpicosecond time scale. Once transferred, electrons and holes form spatially indirect excitons, which have longer recombination lifetimes than excitons in individual MLs.

RESULTS AND DISCUSSION

We make MoS2 [Figure 1a] and MoSe2 [Figure 1b] MLs by mechanical exfoliation of bulk crystals. The MoS2–MoSe2 heterostructure sample [Figure 1c] is fabricated by transferring the MoS2 ML onto the MoSe2 ML on a Si-SiO2 substrate. Figure 1d illustrates the predicted band alignment of the heterostructure,37,38 where the lowest conduction band (C) and the highest valence band (V) lie in MoS2 and MoSe2 layers, respectively. The offset of the conduction (valence) band is predicted to be about 0.37 (0.63) eV.37,38 In addition to the heterostructure region, this flake also contains regions of individual MLs of MoS2 and MoSe2, and hence facilitates direct comparison of the heterostructure with the individual MLs.

Figure 1e shows the PL spectra of the MoS2 ML (blue), MoSe2 ML (red), and MoS2–MoSe2 heterostructure (purple) regions under the excitation of a 632.8 nm continuous-wave laser with an incident power of about 50 μW. The peak positions of the MoS2 (663.0 nm) and MoSe2 (790.5 nm) MLs are consistent with previously reported values.33,34,48–50 The PL yield of the MoSe2 ML is about 20 times higher than that of the MoS2 ML, suggesting stronger nonradiative recombination in the latter. The spectrum of the heterostructure has two peaks at 656.0 and 798.5 nm that are close to the peaks of the individual MoS2 and MoSe2 MLs, respectively. This confirms that the exciton states of the individual layers are largely unchanged in the heterostructure.55,36 We attribute the small shifts of 7–8 nm of these peaks to the different dielectric environments in the heterostructure compared to the individual MLs. The PL peak of MoSe2 in the heterostructure is lower than the individual MoSe2 ML by about 20 times. Such a pronounced PL quenching effect suggests that in the heterostructure most electrons excited in MoSe2 transfer to the lower states in MoS2, instead of forming excitons in MoSe2 and recombine radiatively. Similar

![Figure 1. (a) Optical microscope image of a MoS2 flake that contains a monolayer (ML) region. (b) A MoSe2 ML on a Si-SiO2 substrate. (c) The MoS2–MoSe2 heterostructure fabricated by transferring the MoS2 flake shown in (a) to the top of the MoSe2 ML shown in (b). (d) The predicted alignment of the conduction (C) and valence (V) bands of the heterostructure. (e) Photoluminescence (PL) spectra measured from the regions of the MoS2 ML (blue), the MoSe2 ML (red), and the heterostructure (purple).](image-url)
PL quenching effect has been recently observed in MoS2/C0WSe2 heterostructures. In contrast, the peak of the MoS2 ML is only decreased by about 30% in the heterostructure sample. We attribute this to the pronounced nonradiative recombination in MoS2, which is also consistent with the low PL yield of the MoS2 ML compared to the MoSe2 ML. We note that the transition from the conduction band of MoS2 to the valence band of MoSe2 in the heterostructure is expected to be at about 1030 nm, which is out of the spectral range of this study.

To study the dynamics of charge transfer, exciton formation, and exciton recombination in the MoS2—MoSe2 heterostructure, we perform ultrafast transient absorption measurements in reflection geometry. First, we study transfer of electrons from the MoSe2 to the MoS2 layers, with a configuration illustrated in Figure 2a. A 100 fs pump pulse with a central wavelength of 790 nm is used to excite the sample. Since it is tuned to the exciton resonance of the MoSe2 layer and is far below any exciton states of MoS2, the pump pulse selectively injects excitons in the MoSe2 layer (blue vertical line). A 655 nm probe pulse is tuned to the exciton resonance of the MoS2 layer (red vertical line). Differential reflection of this pulse is measured as a function of the time delay of the probe pulse with respect to the pump pulse, in order to monitor the transient absorption of this exciton resonance.

Here the differential reflection is defined as the normalized change of the reflectance caused by the pump, \(\Delta R/R_0 = (R - R_0)/R_0 \), where \(R \) and \(R_0 \) are the reflectance of the sample with and without the presence of the pump pulse, respectively.

Panels b and c of Figure 2 show the differential reflection signal on long and short time ranges, respectively, measured with a pump fluence of 5 \(\mu \)J cm\(^{-2}\). Since the probe pulse detects the MoS2 layer, which is not excited by the pump, a signal is expected only if electrons injected in MoSe2 transfer to MoS2 across the van der Waals interface, as illustrated by the purple dashed line in Figure 2a. As shown in Figure 2c, the signal reaches the maximum level on an ultrashort time scale. This indicates that the electrons injected in MoSe2 transfer to MoS2 layer rapidly, despite the strong Coulomb interaction between electrons and holes in the injected excitons. The decay of the signal is single exponential, as indicated by the black line in Figure 2b, with a time constant of about 160 ps. We note that the positive sign of the signal indicates that the pump-injected carriers cause an increase of the probe reflection. To exclude the possibility that the probe detects the MoSe2 layer via interacting with higher-energy states in MoSe2, we repeat the measurement with different probe wavelengths. As summarized in Figure 2d, the magnitude of the signal depends strongly on the probe wavelength.

Figure 2. (a) Schematics of the pump—probe configuration used to study the transfer of electrons from MoSe2 to MoS2 in the heterostructure. (b) Differential reflection signal as a function of the probe delay. The black line is a single-exponential fit (with a baseline). (c) Differential reflection signal near zero probe delay. (d) The magnitude of the differential reflection signal as a function of the probe wavelength. (e) Decay constant of the differential reflection signal as a function of the pump fluence, deduced from single-exponential fits to the signal measured under different values of the pump fluence. (f) The magnitude of the differential reflection signal as a function of the pump fluence. The black line indicates a linear fit.
wavelength, with a peak similar to the MoS2 PL from the heterostructure. This confirms that the differential reflection signal is mainly from the exciton resonance of MoS2. By repeating the measurement with various values of the pump fluence, we find that the decay constant is independent of the pump fluence, as shown in Figure 2e, while the magnitude of the signal is proportional to the pump fluence [Figure 2f].

Figure 3. (a) Schematics of the pump–probe configuration used to study the transfer of holes from MoS2 to MoSe2 in the heterostructure. (b) Differential reflection signal as a function of the probe delay measured from the heterostructure (purple squares) and the MoSe2 ML regions (red circles). The black lines are single-exponential fits. (c) Differential reflection signal near zero probe delay. The purple and orange squares are measured with pump wavelengths of 655 and 670 nm, respectively. The gray squares are scaled from the orange squares. The red circles are measured from the MoSe2 ML. (d) The magnitude of the differential reflection signal from the heterostructure as a function of the pump wavelength (purple squares) and the PL spectrum of the heterostructure (gray line). (e) Decay constants of the differential reflection signal as a function of the pump fluence of the heterostructure (purple squares) and the MoSe2 ML regions (red circles), respectively. These values are deduced from single-exponential fits to the signal measured under different values of the pump fluence. (f) The magnitude of the differential reflection signal from the heterostructure (purple squares) and the MoSe2 ML regions (red circles) as a function of the pump fluence.

To separate the contributions of photocarriers injected in the two layers, we repeat the measurement with different pump wavelengths around the exciton resonance of MoS2. The purple squares in Figure 3d show the magnitude of the signal. The PL spectrum of the heterostructure sample in this wavelength range is also plotted for comparison (gray line). Since the absorption of MoSe2 varies slowly and monotonically in this wavelength range,49,51 the observed pump-wavelength dependence confirms the contribution of the excitons injected in MoS2 to the differential reflection signal. From the variation of the signal magnitude of about 30% in this range, we can roughly estimate that with a pump wavelength of 655 nm, the excitons injected in MoS2 make a contribution of about 30%. As we change the pump wavelength in this range, and hence vary the relative contributions of the excitons injected in MoS2 and those injected in MoSe2, the same dynamics of the signal is observed. For example, the orange squares in Figure 3c shows the signal measured with a pump wavelength of 670 nm. After multiplied by a factor of 1.25 to match the magnitude (gray squares), its time variation perfectly matches the signal measured with the 655 nm pump. If the hole transfer from MoS2 to
MoSe$_2$ were a slow process, a slow rising component should have been observed with the 655 nm pump. Hence, the observed same dynamics in this pump-wavelength range indicates that the holes injected in MoS$_2$ transfer to MoSe$_2$ \cite{purple dashes arrow in Figure 3a} on a time scale comparable to, or shorter than, the time resolution of our setup of about 200 fs.

Once the holes transfer to the MoSe$_2$ layer, they are expected to form spatially indirect excitons with electrons in the MoS$_2$ layer. Hence, the decay of the differential reflection signal, with a time constant of about 240 ps, reflects the recombination lifetime of these indirect excitons owing to the slower recombination rate due to the spatial separation of electron and hole wave functions. Furthermore, the magnitude of the signal from the MoSe$_2$ ML is proportional to the pump fluence (F), as shown in Figure 3f. A saturation effect is observed in the heterostructure sample, with the magnitude of the signal $\propto F/(1+F/F_s)$, with a saturation fluence of $F_s = 6.9 \mu J \text{ cm}^{-2}$ (black curve).

Finally, we explore a configuration illustrated in Figure 4a, where a 395 nm pump is used to excite both layers (blue vertical arrow), with a 655 nm probe tuned to the MoS$_2$ exciton resonance (red vertical arrow). We expect the electrons (holes) injected in MoSe$_2$ (MoS$_2$) layer rapidly, followed by formation and recombination of indirect excitons. This configuration also allows us to directly compare the heterostructure region with the MoS$_2$ ML region. Panels b and c of Figure 4 show the differential reflection signals measured with a pump fluence of 1 $\mu J \text{ cm}^{-2}$ from the heterostructure (purple squares) and the MoS$_2$ ML (blue circles) for two time ranges, respectively. In both samples, the signal reaches a peak immediately after the pump excitation. After a subpicosecond fast decay process, the long-term decay process is biexponential in both samples. The two decay constants...
as a function of the pump fluence are summarized in Figure 4d,e. Due to the relatively large uncertainty in the biexponential fits, we are unable to conclusively deduce how these constants change with the pump fluence. However, it is clear that both decay constants are longer in the heterostructure than the MoS₂ ML, under the same conditions. This is consistent with the expected longer lifetime of indirect excitons. Furthermore, saturation effects are observed in both samples, as indicated by the black curves in Figure 4f. Under the same conditions, the signal from the heterostructure is about twice larger than the MoS₂ ML. This is another evidence of electron transfer, since without such a process, the electrons excited in MoSe₂ would not contribute to the signal. In the heterostructure, the MoSe₂ layer donates electrons to MoS₂ but captures holes from it. Hence, the larger signal in the heterostructure also suggests that the electrons are more efficient in inducing a differential reflection signal than the holes in the same layer. We also note, by comparing Figures 4f and 2f, that the 395 nm pump generates a signal of about 5 times larger than the 790 nm pump in the heterostructure sample, with the same fluence. This can be attributed to the higher absorption of MoSe₂ and additional absorption of MoS₂ layers of the 395 nm pump.

CONCLUSION

We obtain evidence of ultrafast charge separation and indirect exciton formation in a heterostructure formed by MoS₂ and MoSe₂ MLs. By selectively injecting excitons in the MoSe₂ layer and probing the MoS₂ layer, we find that the electrons in the excitons injected in MoSe₂ transfer to MoS₂ on a subpicosecond time scale. Similarly, holes in the excitons resonantly injected in MoS₂ are found to transfer to MoSe₂ on the same time scale. Once transferred, the electrons and holes form spatially indirect excitons with recombination lifetimes longer than the excitons in individual MLs. The strong PL quenching effect observed in heterostructures also indicates that the charge transfer is highly efficient.

METHODS

Flakes of MoS₂ and MoSe₂ are first mechanically exfoliated from bulk crystals onto clear and flexible polydimethylsiloxane (PDMS) substrates using adhesive tapes. Monolayer flakes are identified by optical contrasts with an optical microscope, and later confirmed by photoluminescence measurements. Next, a MoSe₂ ML flake is transferred from the PDMS substrate onto a silicon wafer capped with 90 nm of silicon dioxide, utilizing a micromanipulator. The sample is then thermally annealed at 200 °C for 2 h under a H₂–Ar (20–100 sccm) environment at a base pressure of about 3 Torr. Then, a MoS₂ monolayer flake is precisely transferred onto the MoSe₂ flakes. The heterostructure flake is then thermally annealed under the same conditions as mentioned above.

In the differential reflection setup, the output of a diode laser with a wavelength of 532 nm and a power of 2 W is used to pump a Ti:sapphire laser, which generates 100 fs pulses with a central wavelength of 790 nm, a repetition rate of about 80 MHz, and an average power of 2 W. A small portion (about 8%) of this beam is reflected to a beta barium borate (BBO) crystal to generate its second harmonic at 395 nm. A dichroic beamsplitter is used after the BBO crystal to separate the 395 nm beam from the residual 790 nm beam. Both beams are used in the measurement. The majority of the 790 nm beam is incident upon two optical parametric oscillators, which generate second harmonic of this beam around 650 nm. These beams are used in different configurations.

In each configuration of the measurements, the selected pump and probe beams are combined by a beamsplitter and focused to the sample by a microscope objective lens with a numerical aperture of 0.4. The pump and probe spots are 1–2 μm in full-width at half-maxima. The reflection of the probe from the sample is collimated by the objective lens and is sent to a biased silicon photodiode. The reflected pump is prevented from reaching the detector by a set of filters. The output of the photodiode is measured by a lock-in amplifier, with the intensity of the pump beam modulated at about 2 kHz by a mechanical chopper. The differential reflection is measured as a function of the probe delay, which is controlled by the length of the pump path with a linear motor stage.

In all the measurements, the pump and probe beams are linearly polarized along perpendicular directions.

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. This material is based upon work supported by the National Science Foundation of USA under Award Nos. DMR-0954486 and IIA-1430493; the Kansas NSF EPSCoR First Award (EPS-0903806), and startup funding by The University of Kansas.

REFERENCES AND NOTES

